Total No. of Pages: 12

Seat No.

S.E. (Computer Science & Engineering) (Semester - IV) Examination, December - 2015

APPLIED MATHEMATICS (Online)

Sub. Code: 63524

Day and Date: Monday, 07 - 12 - 2015

Total Marks: 50

Time: 12.30 p.m. to 01.30 p.m.

Instructions: 1) Attempt any 50 questions from Q1 to Q60.

2) All questions carry 1 Mark.

- 1) The range of the correlation coefficient is?
 - a) (-1, 1)

b) (0,1)

c) [-1,+1]

d) None of these

- 2) For estimating value of variable X
 - a) Regression equation of Y on X is used
 - b) Regression equation of X on Y is used
 - c) Both Regression equations of Y on X and X on Y are used
 - d) None of these
- 3) Which of the following can not be the possible value of a correlation coefficient?

a)
$$r = 1.99$$

b) r=0

c)
$$r = -0.73$$

d) r = -1.0

4) Which of the following indicates a strong negative correlation?

a)
$$r = -0.846$$

b) r = -0.793

c)
$$r = 0.913$$

d) r = 0.45

	a)	- 0.23	b)	- 0.58				
	c)	- 0.99	d)	- 0.09				
6)	Wit	h the help of correlation coefficient	one o	can study				
- 20	a)	Relation ship between any two attr	ibute	es				
	b)	Relation Ship between any two Va	riable	es				
	c)	Relation ship of more than two var	riable	es				
	d)	None of these						
7)	Ife	quation of the line of regression of y	y on >	s is with positive slope				
	a)	Correlation coefficient is positive						
	b)	Correlation coefficient is negative						
	c)	No correlation						
	d)	None of these						
8)	If equation of the line of regression of y on x is with negative slope							
	a)	Correlation coefficient is positive						
	b)	Correlation coefficient is negative						
	c)	No correlation						
	d)	None of these						
9)		ne regression coefficient of X on Y and not the	d Y o	n X are –0.5 and –0.5 respectively				
	a)	1	b)	0.5				
	c)	-0.5	d)	-0.25				
	If e a) b) c) d) If the	quation of the line of regression of y Correlation coefficient is positive Correlation coefficient is negative No correlation None of these he regression coefficient of X on Y and the	d Y o b)	n X are –0.5 and –0.5 respective				

10) The principal of least squares state that

- a) The sum of square of all points from curve is minimum
- b) The sum of square of all points from curve is maximum
- The sum of square root of all points from curve is minimum c)
- The sum of square root of all points from curve is maximum d)

11) To fit the straight line y = mx + c to n observations, the normal equations are

$$\sum y = n \sum x + \sum cm$$

a)
$$\sum xy = c\sum x^2 + c\sum x$$

b)
$$\sum y = c \sum x + m \sum n$$
$$\sum xy = c \sum x^2 + m \sum x$$

c)
$$\sum y = m \sum x + nc$$
$$\sum xy = c \sum x^2 + c \sum x$$

None of these

12) To fit $y = ab^x$ by least squares method, normal equations are :

- $\sum y = nA + B \sum x$; $\sum xy = A \sum x + B \sum x^2$ where $y = \log y$, $A = \log a \& B = \log b$
- b) $\sum y = nB + A \sum x$; $\sum xy = B \sum x + A \sum x^2$ where $y = \log y$, $A = \log a \& B = \log b$
- c) $\sum y = nA + B \sum x^2$; $\sum xy = A \sum x + B \sum x^2$ where $y = \log y$, $A = \log a \& B = \log b$
- d) None of these

13) Given $\begin{pmatrix} x & 0 & 1 & 2 \\ y & 0 & 1.1 & 2.1 \end{pmatrix}$, then the straight line of best fit y = a+bx then a =

a)
$$a = 1.0167, b = 0.05$$

b)
$$a = 0.0167, b = 1.05$$

c)
$$a = 0.0167, b = 0.05$$

- 15) The equations of regression lines are y = 0.5 x + a and x = 0.4y + b then the correlation coefficient is
 a) √0.2
 b) 0.45
 - c) $-\sqrt{0.2}$ d) 0.63
- 16) If the correlation coefficient is zero, the two regression lines are
 a) Parallel
 b) Perpendicular
 c) coincident
 d) inclined at 45°
- 17) To fit a normal distribution, the parameters required are
 a) Mean & S.D.
 b) Mean & Variance
 c) Mean
 d) S.D. & Variance
- 18) F(x) = kx in 0<x<1 is valid PDF if k =
 a) 1
 b) 2
 c) 3
 d) 4
- 19) For standard normal variate z, P(-0.72<z<0) is
 a) 0.264
 b) 0.235
 c) 0.356
 d) 0.025

				S - 2649
20)	If th	e PDF of x is $f(x) = kx(1-x)$, $0 \le x \le 1$	<1 the	n k is
	a)	2/9	b)	3/5
	c)	1/9	d)	5/7
21)	If a	coin is tossed 6 times in succession	n, the p	probability of getting at least one
	a)	1/64	b)	3/32
	c)	63/64	d)	1/2
22)	If a	random variable x follows Poisson of the distribution is	n distr	ibution s.t. $P(x=1)=P(x=2)$, then
	a)	2	b)	3
	c)	4	d)	1
23)	doe	oin is tossed until a tail appears or a s not appear on the first two tosse sed 5 times is	t the nes, the	nost five times. Given that the tail probability that the coin will be
	a)	1/2	b)	3/5
	c)	1/3	d)	1/4
24)	100	a certain manufacturing process it in items is defective. What is the fore a defective item is found?	s knov probal	wn that on an average, 1 in every bility that 5 items are inspected
	a)	0.0096	b)	0.96
	c)	0.096	d)	None of these
25)	The	e probability of having at least one	tail in	4 throws with a coin is
	a)	3/8	b)	1/2
	c)	ī	d)	None of these

i

26)	8 co	oins are tossed simultaneously. The	proba	ability of getting at least 6 heads
	a)	57/64	b)	229/256
	c)	7/64	d)	37/256
27)		olling two fair dice, the probability of even product is	f getti	ing equal number or number with
	a)	6/36	b)	30/36
	c)	27/36	d)	3/36
28)	The	inequality between mean and varia	nce o	f Binomial distribution which is
	a)	Mean < Variance	b)	Mean=Variance
	c)	Mean > Variance	d)	Mean *Variance = 1
29)		ow two dice over and over until you	ıroll	a double six; X = the number of
	a)	Finite	b)	Discrete Infinite
	c)	Continuous	d)	None of these
30)		e a true-false test with 100 question wered correctly.	ns; X	= the number of questions you
	a)	Finite	b)	Discrete Infinite
	c)	Continuous	d)	None of these
31)		ect a group of 50 people at random; 2 group.	√ = tŀ	ne exact average height (in m) of
	a)	Finite	b)	Discrete Infinite
	c)	Continuous	d)	None of these

				5 - 2012
32)	ranc	probability that a certain dom sample of 6 items is bability that there will be	taken from the ou	oduce a defective item is 1/4. If a atput of this machine, what is the tives in the sample?
	a)	19/4096	b)	1/4096
	c)	4/4096	d)	18/4096
33)		e mean of Binomial dist cess p, is	ribution with n	observations and probability of
	a)	pq	b)	np
	c)	√np	d)	√pq
34)	Fuz	zy set was first develope	ed in the year:	
	a)	1964	b)	1965
	c)	1967	d)	1970
35)	Cha	aracteristic function map	s element of X to	the element of the set
	a)	[0,1]	b)	(0,1)
	c)	{0,1}	d)	none of these
36)	Wh	nen x is declared to be a	member of A the	n $\chi_{A}(x)$ equals
	a)	1	b)	0
	c)	[0,1]	d)	{0,1}
37)	The	e support of fuzzy set A	for which $\alpha = 0$	is exactly same as
	a)	strong α-cut	b)	support of A
	c)	height of A	d)	α-cut

- 38) If $A = \frac{0.4}{v} + \frac{0.2}{w} + \frac{0.6}{x} + \frac{0.81}{y} + \frac{0.98}{z}$. Then |A| equals to
 - a) 2.90

b) 2.99

c) 3.00

- d) 2.98
- 39) The range of S (A,B) is
 - a) $0 \le S(A,B) \le 1$

b) $0 \le S(A,B) \le 1$

c) $0 \le S(A,B) \le 1$

- d) $0 \le S(A,B) \le 1$
- **40)** If A is a Fuzzy set given by $A(x) = \frac{x}{x+2}$, then \overline{A} equals to
 - a) $-\frac{x}{x+2}$

b) $\frac{x}{x+2}$

c) $\frac{2}{x+2}$

- d) $-\frac{2}{x+2}$
- 41) Concept of & acts as a bridge by which fuzzy sets and crisp sets are connected
 - a) Height & support
- b) Normal & Subnormal
- c) α Cuts and strong α cuts
- d) None of these
- **42**) If $A(x) = 2^x$; $x \in \{0,1,2\}$ then A (x) is
 - a) Continuous fuzzy set
- b) Discrete fuzzy set
- c) Discontinuous fuzzy set
- d) None of these
- 43) If $\mu(x)$ is a membership grade function in a fuzzy set A then members will be
 - a) Having $\mu(x) \le 0.5$

b) Having μ(x)=0.5

- c) Having µ(x)≤0.5
- d) None of these

44)	Consider the statements									
	l)	The support of fuzzy set is a crist	set							
	II)	∞ -cut of fuzzy set is fuzzy set								
	a)) Both I) & II) are true								
	b)	I) is true & II) is false								
	c)	Both I) & II) are true								
	d)	I) is false II) is true								
45)	Whi	ich of the following is a major prob	lem w	ith fuzzy logic.						
	a)	It is discrete	b)	It has low respectability						
	c)	It has too many widespread use	d)	None of these						
46)	The	concept of fuzzy logic was first in	trodu	ced by						
	a)	Dennis Ritchie	b)	Stuart Hirshfieid						
	c)	Rich Decher	d)	Lofti Zadeh						
47)		intersection of two fuzzy sets is responding membership values.	s calc	ulated by taking the of						
	a)	Minimum	b)	Maximum						
	c)	Average	d)	Difference						
48)		union of two fuzzy sets is calculated mbership values	i by ta	king the of corresponding						
	a)	Minimum	b)	Maximum						
	c)	Average	d)	Difference						

- 49) A fuzzy set A: X→E([0,1]) where E([0,1]) is the family of all closed intervals is called
 - a) Level 2 fuzzy set
 - b) Level 2 type 2 fuzzy set
 - c) Type 2 fuzzy set
 - d) Interval valued fuzzy set
- 50) Let $A(x) = \frac{x}{x+2}$ be a fuzzy set defined on $X = \{0,1,2,3,4\}$ then level set of A

is

- a) {0,1,2,3,4}
- b) {0.333,0.5,0.6,0.667}
- c) {0,0.333,0.5,0.667}
- d) {0,0.333,0.5,0.6,0.667}
- 51) The support of a fuzzy set $A(x) = \frac{x}{x+2}$ where $X = \{0,1,2,3,4\}$ is
 - a) {0,2,3,4}

b) {2,3,4,5}

c) {1,2,3,4}

- d) {0,0.33,0.5,0.6,0.667}
- 52) If $A(x) = \frac{x}{x+2}$; where $x \in \{0,1,2,3,4\}$. Then |A| is
 - a) 2.1

b) 0

c) 4.5

- d) None of these
- 53) For fuzzy set A & B, we have $A \subseteq B$ then
 - a) B(x) = 1

b) $A(x) \le B(x)$

c) $A(x) \ge B(x)$

d) A(x)=1

- **54)** Let $A(x) = \frac{x}{x+5}$ for then level set of A is $X = \{0,1,2,3,4\}$

 - a) {1,2,3,4}b) {0.167,0.286,0.375,0.444}
 - c) {0.167,0.286,0.275,0.444}
 - d) {0,1,2,3,4}
- 55) If $A(x) = \frac{x}{x+2}$; where $x \in \{0,1,2,3,4\}$, then ^{0.5}A
 - a) {0,1,2}

c) {0,1,2,3,4}

- 56) If $A(x) = 2^x$ for X=[0,10] then _aA is
 - a) $\left[0, \frac{\log \alpha}{\log 2}\right]$
 - b) $\left[\frac{\log \alpha}{\log 2}, 10\right]$
 - c) $\left[0, \frac{\log \frac{1}{\alpha}}{\log 2}\right]$
 - d) $\left[\frac{\log \frac{1}{\alpha}}{\log 2}, 10\right]$
- 57) If $A(x) = \frac{x}{2x+1}$, $B(x) = \frac{x}{x+2}$ $x \in (0,1,2,3)$ then $|A \cap B|$ is
 - a) 3.4

1.1616

c) 0.82

1 d)

58) If $A(x) = 2^x$ & $B(x) = \frac{x}{x+2}$ for $x \in \{0,1,2,3\}$ then S(A,B) is

a) 1.62

b) 1.433

c) 1.2 '

d) 0.09553

59) After adding all the membership grades of the discrete fuzzy set A, we get

- a) Scalar Cardinality
- b) Fuzzy Cardinality

c) Level set of A

d) Special fuzzy set

60) If $A(x) \le B(x)$ for all x belongs to A and B then the degree of subsethood S(A,B) is

a) 1

b) 0.5

c) 0

d) none of these

...

Total No. of Pages: 12

Seat No.	
No.	

S. E. (Computer Science & Engg.) (Semester - III) Examination, December - 2015

				December	- 2015			
	DIS	CRETE	MATHEM	ATICALS'	TRUCT	URES (New) (Onli	ne)
				Sub. Code :	63525			
Tin	ne : 1	2.30 p.m. t ions : 1)	AND STREET OF STREET	ny 50 question		1 to Q.60	Total Mar	ks : 50
		2)	All question	ns carry 1 ma	irk each.			
1)	(7	$P \rightarrow Q \rightarrow Q$	$Q \rightarrow P$) is					
	a)	FTTT		b)	TTTT			
	c)	TTFT		d)	TFTF		4	
2)	IfC	Conjunction	n is False the	n set of form	ulas H1, H	2,, Hn	is said to be	
	a)	Consiste	nt	b)	Inconsis	stent		20
	c)	Valid		d)	Invalid		**	50
3)		K-map stru nction of n		rea which is s	subdivideo	l into	cells for a B	oolean
	a)	n		b)	2^n			
	c)	2^(2^n)		d)	2^(n+1)			
4)	Α_	is an o	rdered set w	hich consists	of a fixed	number	of objects.	
	a)	Vector		b)	Batch			Ţē.
	c)	Plex		d)	None of	these		
						¥		P.T.O.

		5)	c.	at the last to the state of the	5 - 2058
		5)		et inclusion is	
3			a)	- I Symmetric	
			b)	, and the first terms of the fir	
			c)		
			d)	Reflexive, Symmetric & Transitive	
	•	6)	Re {<	elation R is defined on N-set of natural numbers (inclua,b> a,b are both odd) is	iding 0) by R =
			a)	Reflexive	
			b)	Symmetric	
			c)	Transitive	
		9	d)	Antisymmetric	
		7)	Eve	ery chain is alattice.	:0
		2000	a)	Complemented	
	7.8		b)	Complete	
			c)	Bounded	
			d)	Distributive	Si.
		8)	Ifh	omomorphism a.V. V.	
	8	7.0	a)	omomorphism g:X→Y is one to one onto then g is called Epimorphism	
			b)		
			c)	Monomorphism	
			d)	Isomorphism Endomorphism	(19)
		9)	If in	a monoid <m,*,e> every element is invertible then the m</m,*,e>	onoid is called
			_		
			a)	Inverse	
			b)	Group	
			c)	Submonoid	
			d)	Semigroup	

10)	Inc	relationship between 1E & 1L of sink node in PEK1 graph is
	a)	TE-TL
	b)	TE>=TL
	c)	TE<=TL
	d)	None of these
11)	Wh	at is the probability of getting sum less than 9 when two dice was rolled?
	a)	21/36
	b)	13/18
	c)	1/2
	d)	5/12
12)	Any	y graph which contain some parallel edges is called
	a)	Directed Graph
	b)	Multigraph
	c)	Isomorphic Graph
	d)	Simple Graph
13)	Ap	ath in a digraph in which the edges are all distinct is called
	a)	Edge Simple
	b)	Node Simple
	c)	Cyclic Path
	d)	None of these
14)	Ag	roup <g,*> in which operation * is commutative is called</g,*>
	a)	Group
	b)	Subalgebra of G
	c)	Abelian Group
	d)	All

	b)	3/6		
	c)	% 10		
	d)	None of these		
16)	If r	node has degree 2 then node h	90	
22.6	a)	1 subtree	43	
	- 10	2 subtrees		
	- 50%	2 trees		
		2 leaf nodes		
17)	If /	A={1,2,3,4} B={1,4,5}, then A	+B i	8
		{1,2,3,4,5}		-
	100	{1,3,5}		
	660	{1,4,5}		
	d)	{2,3,5}		
10	17-1			
		llowing confusion is valid		
	a)	H1:P→Q, H2:P, C:Q		
	30	H1:P→Q, H2: ¬P, C:Q		
	c)	H1:P→Q, H2:Q, C:P		
	d)	H1: ¬P,H2:PvQ, C:P		
19)	Giv	ven Boolean algebra <l,*,+,',0,< td=""><td>1></td><td></td></l,*,+,',0,<>	1>	
	i)	Set L contains only 2 element	s	
	ii)	Operation * & + are distribut	ive o	ver each other.
	Wh	nich is true		
	a)	i)	b)	ii)
	c)	Both		Neither i) or ii)
		語	-4-	
			-4-	

a) 2/3

20)	If<	G,*> is a group then which of the	e following is false	
	a)	$a*b=a*c \Rightarrow b=c$		
	b)	$a*c=b*c \Rightarrow a=b$		
	c)	a*b=b*a		
	d)	(a*b)^-1=b^-1*a^-1		
21)	Rel	ation R defined on N-set of natur	al numbers (including 0) by	
	R =	{ <a,b> (a-b) is divisible by 5}</a,b>	is,	
	a)	Reflexive		
	b)	Symmetric		
	c)	Transitive		
	d)	All		
22)	The	notation containing operand in bo	etween operator is called as	notation.
	a)	Suffix		
	b)	Infix		
	c)	Prefix		
	d)	None of these		
23)	Ala	attice is calledif each of it's	non-empty subsets has a LUI	B & GLB.
	a)	Complemented		
	b)	Complete		
	c)	Distributive		
	d)	All		
24)	Tota	al degree of isolated node is		
	a)	1		
	b)	0		
	c)	Indegree of node		
	d)	Outdegree of node		

		3 - 2036
25)	(X	1*X2) + (X'2*X'3) + (X1*X3) this expression symmetric in
	a)	X2,X3 and X1,X3
	b)	X1,X2 and X2,X3
	c)	X1,X2 and X1,X3
	d)	None of these
26)	Wh	ich of the following is a partition of set S={1,2,3,4,5,6}.
	a)	HE NOTE NOTE NOTE IN A SECTION OF COMPLETE CONTROL OF A SECTION OF A
	b)	{{1,5},{2},{3,6}}
	c)	{{1,5},{2},{4},{3,6}}
	d)	{{1,2,3},{2,4,5},{6}}
27)	For	group <g,*> select proper option from the following</g,*>
	i)	<{},*> is a subgroup
	ii)	Has unique identity element
	a)	Both true
	b)	Both false
	c)	i-T & ii-F
	d)	i-F & ii-T
28)	The	connective NOR is not
	a)	Commutative
	b)	Associative
	c)	Both
	d)	None of these
29)	For	any statement formula P→Q the statement formula is called its inverse.
	a)	- BROTH BROTH CONTROL OF CONTROL - BERNING STORY S
	b)	$\neg P \rightarrow \neg Q$
	c)	$\neg Q \rightarrow \neg P$
	44	7.P G

			S-2			
30)	A partially ordered set is calledif every non empty subset of it has least member.					
	a)	Well ordered				
	b)	Well formed formula				
	c)	Both				
	d)	None of these				
31)	The	Adjacency matrix is				
	a)	Boolean matrix				
	b)	Path Matrix				
	c)	Both Boolean & path matrix				
	d)	None of these				
32)	An	ordered pair whose first member is	itself an ordered pair is called as	17		
	a)	Ordered Pair				
	b)	Ordered Triple				
	c)	Ordered Quadruple				
	d)	Ordered n-tuple				
33)	The	conjunction operation with data st ctures. This operation is called_	ructure is one which changes data in	the		
	a)	Undating				

Intersection

None of these

Union

c)

		S - 2658
34)	If one experiment has m possible possible outcomes then there are _ experiments take place.	outcomes and another experiment has n possible outcomes when both of these
	a) m+n	10
	b) m*n	
	c) m-n	
	d) None of these	
35)	The bound of Lattice are denoted	by
	a) 11 & 01	47
	b) θ&1	
	c) *&+	
	d) None of these	
36)	An event that contains one sample	is referred as,
	a) Sample Space	
	b) Simple Event	
	c) Compound Event	
	d) None of these	
37)	For Probability select the correct of	ption from the following
	i) The Probability of each samp	
*		the samples in sample space is not equal to I.
	a) Both True	b) Both False
	c) i-T & ii-F	d) i-F & ii-T
		-8-

			S	- 2658
38)	If v	ve reserve the direction of edges in graph G= <v,e< th=""><th>then it is called</th><th>1</th></v,e<>	then it is called	1
	a)	Converse of G		
	b)	Converse of E		
	c)	Inverse of G		
	d)	Inverse of E		
220		50 2000 B 1		
39)	Pre	order is the sequence of		
	a)	root node \rightarrow left sub tree \rightarrow right sub tree		
	b)	left sub tree \rightarrow root node \rightarrow right sub tree		
	e)	root node \rightarrow right sub tree \rightarrow left sub tree		
	d)	left sub tree \rightarrow right sub tree \rightarrow root node		
40)	A s	et of disjoint trees is called a		
	a)	Disjoint set		
	b)	Forest		
	c)	Subtrees		
	d)	Both a & b		

- a) AB^v¬C & ^ABC¬v
- b) ABCv^- & vA^B-C
- c) ABC-v^& AvB-C
- d) None of this

42	1 16	th			S - 2658
42	<i>)</i> 11	there are (n+2) variables the	en for n=(n-2), the possible values of	of truth table is
	a)	n^2			
	b)	2^n			
	c)	(n-2)^2			
	d)	n		485	
43)	w	hich of the following are sta	atements		
	i)	Nagpur is famous for Ba			
	ii)	Open the door,			(0)
	iii)	Today is Wednesday	60		
	a)	iⅈ	b)	ii & iii	
	c)	i & iii	d)	All of the above	
44)	Giv of	ven A={a,b,c} & a Boolean (a) is	n algebra	<p(a),∩,∪,',0,1>. The</p(a),∩,∪,',0,1>	Complement
	a)	{b,c}			
	b)	{b}			
	c)	{c}			
	d)	(b) or (c)			
45)	Whi	ich is not an algebraic syste	em	97	
	a)	<n,+,-></n,+,->			
	b)	<r,+,×></r,+,×>			
	c)	<1,+×>			
	d)	<1,+>			
14.7	522	130			

3

						S - 2658	
*	46)	Th	e elements of list are		314		
		a)	Atoms	b)	Lists		
		c)	Either atom or list	d)	Both atom & list		
	47)	W	nich of the following stater	nent is cor	stradiction		
		a)	$(P \land Q) \rightarrow P$	b)	$(P \rightarrow \neg P) \rightarrow \neg P$		
		c)	$P \rightarrow (PvQ)$	d)	(¬P∧P)∧Q		
	48)	(P1	(Q) ⇔				
		a)	$\neg P \land \neg Q$	b)	¬(P^Q)		
		c)	$\neg P \land Q$	d)	None of these		
	49)	Aŗ	proper inclusion is not				
		a)	Reflexive	b)	Symmetric		
		c)	Transitive	d)	Asymmetric		
	50)	A formula which consist of product of elementary sums is called					
		a)	Minterm	b)	Maxterm		
		c)	DNF	d)	CNF		
	51)	The	e set S _a of all permutations led	of n elem	ents is a permutation gro	up <s<sub>n, D> is</s<sub>	
		a)	Symmetric Group	b)	Dihedral Group		
		c)	Semigroup	d)	None of these		
	52)	An	isomorphism of <g,*> to</g,*>	<g •=""> ie</g>	called as	53	
	,	a)	Endomorphism	b)			
		e)	Epimorphism	d)			
	53)	All	POSET are lattices				
	-01.5E	a)	True	b)	False		
		c)	Can't say	d)	None of these		
				3.4			

			S - 265						
) T	The cubes which are not covered by any other cube is called as								
a)	o cube	b)	Prime implicant						
c)	Minimized cube	d)							
) Ti	e atoms of the Boolean alge	bra are	called as						
a)	Maxterms	b)	Minterms						
c)	Midterms		Antiterms						
) Th	e sum of probability distribu	tion fu	nction is						
a)	Greater than 1								
c)	Equal to 1	752377							
AI	Boolean algebra is	9							
		ъ	Complemented & Distributive						
c)	Bounded & Distributive	- 0	The state of the s						
The	direct product of any two d	istribut	ive lattices is a						
a)	Complemented Lattice	b)	Complete Lattice						
c)	Distributive Lattice		Bounded Lattice						
Isor	norphic graph is the graph it	f							
a)	There exist one to one corre	snonde	nce batusan nodes of d						
b)	There exist one to one onto	corres	nondence						
c)	Preserves adjacency of nod	es	pointence						
		77%							
The	The path of minimum length (u to v) is called goods is if								
a)	v is reachable from u	b)	u is reachable from v						
c)	v is not reachable from u		None of these						
	a) (a) (b) (c) (d) (d) (d) (d) (d) (d)	a) 0 cube c) Minimized cube The atoms of the Boolean alge a) Maxterms c) Midterms The sum of probability distribut a) Greater than I c) Equal to I A Boolean algebra is a) Complete & Distributive c) Bounded & Distributive The direct product of any two day a) Complemented Lattice c) Distributive Lattice Isomorphic graph is the graph in th	a) 0 cube c) Minimized cube d) The atoms of the Boolean algebra are a) Maxterms b) c) Midterms d) The sum of probability distribution fur a) Greater than 1 b) c) Equal to 1 d) A Boolean algebra is a) Complete & Distributive b) c) Bounded & Distributive d) The direct product of any two distribut a) Complemented Lattice b) c) Distributive Lattice d) Isomorphic graph is the graph if a) There exist one to one corresponde b) There exist one to one onto corres c) Preserves adjacency of nodes d) Both a & c The path of minimum length (u to v) is a a) v is reachable from u b)						

(अ (अ (अ

Total	No.	of	Pages	:	8	

Seat		
No.		

S.	E. C			ination, December - 2015
		DATA STRUC	CTURES	(Online)
		Sub. Co	de: 6352	26
Tin		Date: Monday, 14 - 12 - 2015 30 p.m. to 01.30 p.m. ons: 1) All questions are con 2) Each question carry		Total Marks : 50
1, 3	Stack	is		
	(a)	LIFO structure	(b)	FIFO structure
	(c)	Linear data structure	(d)	Both (a) and (c)
2.	Wh	ich expression is free from pre	ecedence?	
	(a)	Prefix	(b)	Postfix
	(c)	Fully parenthesized	(d)	All of these
3.	Deg	gree of a node in a tree is		
	(a)	Number of children	(b)	Number of descendants
	(c)	Number of siblings	(d)	All of these
4.	Deg	tree of a node in a graph is		
	(a)	number of edges coming to t	hat node	
	(b)	number of edges coming out	of that no	de
	(c)	number of edges linked to the	e node	*
	(d)	all of these.		
5.	Whi	ich queue in an array can utiliz	e location v	vacated by deleted elements?
	(a)	linear queue	(b)	circular queue
	Cak	both (a) and (b)	(4)	none of these

2	970	3 83		5 - 2051			
6.		ree is a					
	(a)	hierarchical structure					
	(b)	a graph without a cycle					
	(c)	it is a graph with a unique node	known	as root			
	(d)	all of these					
7.	A graph containing ordered pair of vertices is called as,						
	(a)	Complete graph	(b)	Weighted graph			
	(c)	Undirected graph	(d)	Directed graph			
8.	Αq	ueue can be implemented using _					
	(a)	an array	(b)	a linked list			
	(c)	both (a) and (b)	(d)	only (a) not (b)			
9.	All	siblings of a node can be found ea	asily us	sing			
	(a)	BFS traversal	(b)	DFS traversal			
	(c)	both (a) and (b)	(d)	none of these			
10.	If the variable top points to the top most element in the array then number of elements in the stack is						
	(a)	top	(b)	top + I			
	(c)	top - 1	(d)	none of these			
11.	The	worst case occur in linear search	algorit	hm when			
	(a)	Item is somewhere in the middle	of the	array			
	(b)	Item is not in the array at all					
	(c)	Item is the last element in the arra	iy				
	(d)	Item is the last element in the arra	ay or ite	em is not there at all			
12.	The	The searching technique that takes O (1) time to find a data is					
	(a)	Linear Search	(b)	Binary search			
	(c)	Hashing	(d)	Tree Search			

					D MUDI
13.		ked list is generally conside nory allocation.	red as an e	example of	_ type of
	(a)	Static	(b)	Hybrid	
	(c)	Compile Time	(d)	Dynamic	
14.	In a	binary tree,			
	(a)	Each node has maximum of	3 children		
	(b)	Each node has maximum of	2 children		
	(c)	Each node has minimum of	2 children		
	(d)	Each node has minimum of	1 child		
15.	The	result of insertion in a full qu	ieue will ca	use	
	(a)	underfiow	(b)	overflow	
-	(c)	exception .	(d)	none of these	
16.	Giv	e the height of the given tree	is		¥3
	(a)	0	(b)	1	
	(c)	2	(d)	None of these	
17.	Wh	at will be the postfix expression	on of follow	ing expression?	
	(A+	B)*(C*D-E)*F/G	2		
	(a)	AB+CD*E-FG/**	(b)	AB+CDE_*FG/* *	
	(c)	AB+CD*E-*FG/ *	(d)	None of these	
18.	A C	omplete graph with N vertice	es has		
	(a)	N edges	(b)	N(N-1)/2 edges	
	(c)	No edges	(d)	None of the above	

19.	ΑV	Veighted graph is defined as		
	(a)	Edges are assigned with some va	lue.	
	(b)	Edges are assigned with direction	n.	60
	(c)	Edges don't have direction.		
	(d)	None of the above		
20.	Stac	ck cannot be used for		
	(a)	Recursion implementation		
	(b)	Function call		
	(c)	Resource allocation and scheduli	ing	
	(d)	Parsing		
21.		n algorithm, it is frequently require resentation should be used?	ed to tra	ace ascendants of a node. Which
	(a)	array representation	(b)	linked representation
	(c)	both (a) and (b)	(d)	none of these
22.	Con	nplexity of linear search algorithm	is	
	(a)	O(n ²)	(b)	O(log n)
	(c)	O(n)	(d)	O(n log n)
23.		nked list in which the last node o	f Linke	ed list points to the first node is
	(a)	Single linked list	(b)	Circular linked list
	(c)	Double linked list	(d)	None of the above
24.	Wha	at is right way to Initialize array?		
	(a)	int (6) = { $2,4, 12,5,45,5$ };	(b)	int n{} = { 2,4, 12,5,45,5 };
	(c)	int $n\{6\}=\{2,4,12\}$;	(d)	int num{6]={2,4, 12,5,45,5};
25.	Eva	luate following postfix expression	653-	+9*+
	(a)	72	(b)	78
	(c)	76	(d)	66

26.	Ac	ycle is simple path in which		9000 WARRANA ***					
	(a)	Start and end points are differen	t						
	(b)	Start and end points are same							
	(c)	Have start point but not the end	point						
	(d)	None of the above							
27.	The	maximum number of nodes at de	pth d is	n a binary tree is					
	(a)	24-1	(b)	2 ^{d-1}					
	(c)	2 ^{d+1}	(d)	2 ^d					
28.	Stat	e True or False.							
	i)	An undirected graph which cont	ains no	cycles is called forest.					
	ii)	A graph is said to be complete it vertices.	there i	s an edge between every pair of					
	(a)	True, True	(b)	False, True					
	(c)	False, False	(d)	True, False					
29.	User want to insert single element on to the stack having already 6 elements and having stack size 6 then stack becomes								
	(a)	Underflow	(b)	Crash					
	(c)	None of these	(d)	Overflow					
30.	Maxi	mum number of nodes in a binary	tree o	f height h is					
	(a)	2h	(b)	2^{h+1}					
	(c)	$2^{h+1}-1$	(d)	$2^{h-1}+1$					
31.	Ver	y slow way of sorting is	8.6						
	(a)	Bubble sort	(b)	Insertion sort					
	(c)	Heap sort	(d)	Quick sort					
32.	The situation when in a linked list START=NULL is								
	(a)	Empty	(b)	Full .					
	(c)	Saturated	(d)	None of these					

				S - 2631			
33.	Ali	near list in which the pointer points	only to	the successive node is			
	(a)	Singly linked list	(b)	Circular linked list			
	(c)	Doubly linked list	(d)	None of the above			
34.		rected graph is if there is a ex in the digraph.	path	from each vertex to every other			
	(a)	Weakly connected	(b)	Strongly Connected			
	(c)	Tightly Connected	(d)	Linearly Connected			
35.	Exp	ression in which the operator is wr	itten b	sefore the operand is called as			
	(a)	Infix	(b)	Prefix			
	(c)	Postfix	(d)	None of these			
36.	A tr	ee with n nodes have edge	s				
	(a)	n + 1	(b)	n			
	(c)	n-1	(d)	n + 2			
37.	The	total number of comparisons in a	bubbl	e sort is			
	(a)	O (n log n)	(b)	O (2°)			
	(c)	O (n2)	(d)	O (n)			
38,	_	refers to a linear collection o	f data	items.			
	(a)	Edge	(b)	Linked List			
	(c)	Graph .	(d)	Tree			
39.	Size of the array need not be specified, when						
	(a) Initialization is a part of definition						
	(b)	It is a declaration					
	(c)	It is a formal parameter					
	(d)	All of these					

40.		versing a binary treed traversa		e the	en root and then right subtree is			
	(a)	postorder		(b)	preorder			
,	(c)	inorder		(d)	BFS			
41.		he — traversal we in adjacent vertex.	process all of a ve	ertex	s's descendents before we move			
	(a)	Depth First		(b)	Breadth First			
	(c)	With First	4	(d)	Depth Limited			
42.	In a	graph if e=[u, v],	Then u and v are c	alle	d .			
	(a)	endpoints of e		(b)	adjacent nodes			
	(c)	neighbors		(d)	all of above			
43.		is very useful in situation when data have to stored and then retrieved in reverse order.						
	(a)	Stack		(b)	Queue			
	(c)	List		(d)	Link list			
44.		Which traversal technique will locate a node quickly, if it is close to the root node,						
	(a)	postorder		(b)	preorder			
	(c)	inorder		(d)	BFS			
45.	To i		natrix dynamically	, the	following data structure is			
	(a)	Trees		(b)	Graphs			
	(c)	Priority Queues		(d)	Linked List			
46.	Ad	oubly linked list is	also called as		- 55			
	(a)	Left list		(b)	One way list			
	(c)	Two way list		(d)	Right list			

clas	아픈지, 내 이번 열어들이 모든지 아이트를 받는 일반이 되었다면 하지 않는 것이 되었다면 하다.	position when hash address is occupied i		
(a)	Collision resolution	(b)	Address space resolution	
(c)	Multiple hashing resolution	(d)	Chaining resolution	
Con	sider the tree given below			
	C B A			
Whi	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	ame resu	ult?	
(a)	preorder, inorder	(b)	preorder, postorder	
(c)	inorder, postorder	(d)	none of these	
Grap	hs are represented using	-		
(a)	Adjacency tree	(b) A	Adjacency linked list	
(c)	Adjacency graph	(d)	Adjacency queue	
		ructure	of which one of the following	
(a)	Insertion sort	(b)	Binary search	
(c)	Radix sort	(d)	Polynomial manipulation	
	(a) (c) Con (a) (c) Grap (a) (c) Lini prol (a)	(c) Multiple hashing resolution Consider the tree given below Which two traversals will gives the s (a) preorder, inorder (c) inorder, postorder Graphs are represented using (a) Adjacency tree (c) Adjacency graph Linked list are not suitable data st problems? (a) Insertion sort	(a) Collision resolution (b) (c) Multiple hashing resolution (d) Consider the tree given below Which two traversals will gives the same result (a) preorder, inorder (b) (c) inorder, postorder (d) Graphs are represented using (a) Adjacency tree (b) (b) (c) Adjacency graph (d) Linked list are not suitable data structure problems? (a) Insertion sort (b)	

Total No. of Pages: 12

No.

S.E. (C.S.E.) (Semester - III) Examination, December - 2015 DATA COMMUNICATION (Online) (New)

			Sub. Code	: 635	527
Da	ay and	d Date : We	dnesday, 16 - 12 - 2015		Total Marks : 50
Ti	me : 1	12.30 p.m. to	01.30 p.m.		
	Instru	ections : I)	Attempt any 50 Question	s fron	Q.1 to Q.60,
		2)	All questions carry one n	nark e	ach.
1)	_	is a	set of rules that governs	the o	data communications
	A)	Standard		B)	Rule
	C)	Protocol		D)	None of these
2)	Αŗ	periodic sig	nal completes one cycle	in 0.	.001 s. What is the frequency?
		1 Hz			100 Hz
	C)	1 KHz		D)	1 MHz
3)	In_sam	me time.	de, each station can bo	th trai	nsmit and receive, but not at the
	A)	simplex		B)	half-duplex
	C)	full-duple	x	D)	None of these
	£3				
4)	Sine	wave can	be represented by the p	aram	eters
	A)	Peak amp	litude	B)	Frequency
	C)	Phase		D)	All of these

5)	Whic	ch of the following is r	not the	categ	ory	of topology?
	A)	Mesh			B)	Star
	C)	Bus			D)	Circle
6)		ntionship between am	plitude	and	frec	quency can be represented by
		Time-domain plot				
	B)	Frequency-domain pl	ot			
	C)	Graph				
	D)	None of these				
7)	Bas	eband transmission o	f a dig	ital	sign	al is possible only if we have
	A)	Low-pass			B)	Bandpass
	C)	Low rate			D)	High rate
8)	In	connection, n	nore tha	ın tw	o sp	ecific devices share a single link.
(53)		Point-to-Point				Multipoint
	C)	Primary			D	None of these
9)	stro	is a type of tra	nsmiss	ion i	mpa	irment in which the signal loses nission medium.
		Attenuation			В	\$1 \(\frac{1}{2}\text{2}\text{2}\text{3}\text{3}\text{2}\text{3}
	C)	Noise			D) Decibel

10)	Cak	rulate SNR for noise	less channel?					
	A)	0	B)	∞				
	C)	1	D)	None of these				
11)		is a data co		m within a building, plant, or				
	A)	LAN	B)	WAN				
	C)	MAN ·	D)	None of these				
12)		refers to the st		the data, meaning the order in				
	A)	Semantics	B)	Syntax				
	C)	Timing	. D)	All of the above				
13)	describes the position of the waveform relative to time 0.							
	A)	Frequency	B)	Phase				
	C)	Amplitude	D)	Voltage				
14)	In f	liber optics, the sign	al is way	es.				
	A)	light	B)	radio				
	C)	infrared	D)	very low-frequency				
15)		The is the number of bits sent in 1s, expressed in bits per secon (bps).						
1	A)	Bit length	B)	Bit rate				
	C)	Wavelength	D)	None of these				

16)	_	refers to the variation in the packet arrival time.						
	(A)	Delivery	B)	Accuracy	- 22			
	C)	Gitter	D)	Timelines				
17)	The	e idea of RZ and idea of NRZ-	are con	nbined into schemes.				
	(A)	Manchester						
	B)	Differential Manchester						
	C)	Both A) and B)						
	D)	None of these						
18)	Rac	fio waves are						
	A)	Omnidirectional	B)	Unidirectional				
	C)	Bidirectional	D)	None of these				
19)	ofa	layer of OSI model is respor	sible for	the process-to-process delivery				
	A)	Physical	B)	Data-link				
	C)	Network	D)	Transport				
20)		en a beam of light travels thror angle of incidence is greater tha		ia of two different densities, if itical angle, occurs.				
	A)	Reflection	B)	Refraction				
	C)	Incidence	D)	Criticism				
21)		signal levels are on one side of eme.	the time	axis in Line coding				
	A)	Unipolar	B)	Bipolar				
	C)	Bipolar	D)	All of these				

traction
ion.
ive changed
ral and data
f an error &

 \uparrow

28)	Bit-	oriented protocols is the	approach us	ed	in
	A)	Fixed-size framing	В)	Variable-size framing
	C)	Flow control	D)	None of these
29)	Мо	st common UTP connec	tor is		
	A)	RJ45	В)	BNC
	C)	BNC-T	D)	None of these
30)	In t	olock coding, message	is divided int	0	blocks, each of k bits, called
	A)	Datawords	В)	Cedewoods
	C)	Keywords	D)	Passwords
31)		propagation, vight lines directly from a			ency signals are transmitted in na.
	A)	Ground	В)	Sky
	C)	Line-of-sight	D)	None of these
32)	Der	sity of the core remai	ns constant f	ro	m the center to the edges in
	A)	Multimode graded-inde	x fiber		
	B)	Multimode step-index	fiber		
20	C)	Single mode			
	D)	None of these			

33)	Aft The	er adding r redundant l e resulting n-bit blocks	oits to each bloc are called	k to make the length $n = k + r$,
	A)	Datawords	B)	Blockwords
	C)	Codewords	- D)	None of these
34)	con	between two wo	ords (of same siz	e) is no. of differences between
		Bandwidth	B)	Length
	C)	Phase		Hamming Distance
35)	area	signals can be using line-of-sight pro	sed for short-rai	nge communication in a closed
	A)	Radio waves	B)	Microwaves
	C)	Infrared	D)	None of these
26)	The	Umaria dia 1	100 100	
30)		Hamming distance bet		
	A)		B)	0
	C)	1	D)	None of these
37)	If a with	noiseless channel with two signal levels the n	a bandwidth of naximum Bit rate	3000 Hz transmitting a signal a would be
	A)	12000 bps	B)	6000 bps
	C)	1800bps	D)	zero
20\	T			
30)		yelic redundancy check		
		The divisor	B)	The quotient
	C)	The dividend	D)	The remainder

39)	As t	he data packet moves from the u	pper t	o the lower layers, headers are
	A)	Added	B)	Removed
	C)	Rearranged	D)	Modified
40)	A_rege	receives a signal and, beternerates the original bit pattern. It	fore it then s	becomes too weak or corrupted, ends the refreshed signal.
	A)	passive hub	B)	repeater
	C)	bridge	D)	router
41)		nodulo-2 arithmetic, we use the _ subtraction.		operation for both addition
	A)	XOR	B)	OR
	C)	AND '	D)	None of these
42)	In .	each station sends a fra	ame w	henever it has a frame to send.
	A)	Pure ALOHA	B)	Slotted ALOHA
0.50	C)	Both (A) and (B)	D)	Neither (A) nor (B)
43)	HC	DLC is an acronym for		
	Å)	High-duplex line communication	on	
	B)	High-level data link control		
	C)	Half-duplex digital link combin	nation	
	D)	Host double-level circuit		

1

44)	In tim	pure ALOHA, the vulnerable time e.	is _	the frame transmission
	A)	The same as	B)	Two times
	C)	Three times	D)	None of these
45)	In	the Protocol, the sequen	nce n	numbers are modulo 2 ^m .
	A)	Simplest	B)	Stop-and-wait
	C)	Go-back-N	D)	None of these
		70		
46)		the time is divided in respond to one frame.	to di	screte intervals, each interval
	A)	Pure ALOHA	B)	CSMA
	C)	Slotted ALOHA	D)	None of these
47)	Che	ecksums use arithmetic		
	A)	Two's complement arithmetic		
	B)	One's complement arithmetic		
	C)	Either (A) or (B)		
	D)	None of these		£
48)		Q stands for		
	A)	Automatic repeat quantization		
	B)	Acknowledge repeat		
	C)	Automatic retransmission request		
	D)	Automatic repeat request request		

49)	_	is a standa	ard for a 1-persistent	CSMA/CD LAN.
	A)	IEEE 802.3		
	B)	IEEE802.4		
	C)	IEEE 802.5		
	D)	None of these		
50)		o-and-Wait ARQ I window is I.	is a special case of _	in which the size of the
	A)	Go-Back-N AR	Q	
	B)	Stop-and-wait		
	C)	Simplest		
	D)	None of these		
51)	In ti	ne meti	hod, each station has	a predecessor and a successor.
	A)	Reservation		
	B)	Polling		
	C)	Token passing		
	D)	None of these		
52)	_	supports segr	nents of up to 500 m	eters.
	A)	10Base5	B)	10Base2
	C)	10Base-T	. D)	None of these
53)	The	is used	d to synchronize the r	eceiver's clock.
	A)	SOF field	B)	Preamble field
	C)	FCS field	D)	None of these

54)	fran	In the method, after the station finds the line idle, it sends its frame immediately. If the line is not idle, it continuously senses the line until it finds it idle.				
	A)	Nonpersistent	B)	1-persistent		
	C)	p-persistent	D)	None of these		
55)	Tol	cen bus was standardized by IEEE	stan	dard		
	A)	802.3	B)	802.6		
	C)	802.5	D)	802.4		
56)	DQ	DB stands for				
	A)	Double Quality Double Bus				
	B)	Dual Quality Dual Bus		. 80		
	C)	Distributed Queue Dual Bus				
	D)	Distributed Queue Double Bus				
57)		he method, all data exc nary device even when the ultimate				
	A)	Reservation	B)	Polling		
	C)	Token passing	D)	None of these		
		84				
58)	Wh	ich is the part of Data Link Layer?				
	A)	LLC	B)	MAC		
	C)	Both A) and B)	D)	None of these		

- 59) IEEE 802.6 standard is used for _____.
 - A) LANs
 - B) MANs
 - C) WANs
 - D) None of these
- 60) OSI stands for _____.
 - A) Open System Interface
 - B) Out System Interface
 - C) Open System Interconnection
 - D) Out System Interconnection.

Total	No.	of	Pages	8
N TARREST	4.7324	402	a cranto	 ca.

Seat	
No.	

	S.E.	(Online) Examinati		[1] 경기 (1] [1] (1] [1] [1] [1] (1] [1] [1] [1] [1] [1] [1] [1] [1] [1] [
		MICROPROC		(4) B.N.O.O.A. (1) P. P. (2000)
		Sub. Co		State of the state
Tin		Date : Friday, 11 - 12 - 2015 2.30 p.m. to 01.30 p.m. ons: 1) Attempt any 50 quest 2) All questions carry 1	ions from mark each	Total Marks : 50 Q 1 to Q 60.
1.	fro	is 8 bit register that usuall m memory locations, before the	y tempora ir actual e	rily stores the instructions drawn execution.
	a)	Accumulator	b)	Flag register
	c)	Temp register	d)	Instruction register
2.	The 808	e maximum number of memor	y location	as that can be addressed by the
	a)	8KB	b)	1MB
	c)	32KB	d)	64KB
3.	XR	A A is byte instruct	ion.	
	a)	1	b)	2
	c)	3	d)	4
4.	MC	DV A, M is an example of	add	ressing mode.
	a)	Register	b)	Direct
	c)	Indirect	d)	Implied
5.	491	e contents of register (B) and Act I and 3AH respectively. The con sign flag (S) after executing SU	tents of A	(A) of 8085 microprocessor are and the status of carry flag (CY) action are
	a)	A=F1,CY=1,S=1	b)	A=0F, CY=1, S=1
	c)	A=F0, CY=0, S=0	d)	Λ=1F, CY=1, S=1

6.	In an 8085 microprocessor, the instruction CMP B has been executed while the content of the accumulator is less than that of register B. As a result,							
	a)	Carry flag will be set but Zero	flag will	be reset				
	b)	b) Carry flag will be reset but Zero flag will be set						
	c)	c) Both Carry flag and Zero flag will be reset						
	d)	Both Carry flag and Zero flag	will be so	et				
7.		the 8085 assembly language pumulator after the execution of t		given below, the content of the				
	M	ЛА, 45Н						
	MO	OV B, A						
	ST	С						
	CN	1C						
	RA	R						
	XR	AB						
	a)	00H	b)	45H				
	c)	67H	d)	E6H				
8.	DAD H instruction adds the content of HL pair and							
	a)	BC	b)	DE				
	c)	HL	d)	AF				
9,	XCHG instruction exchange the content of the HL and register pairs.							
	a)	BC	b)	DE				
	c)	HL	d)	AF				
10.	The content of the accumulator after the execution of XRA A							
	a)	00H	b)	FFH				
	c)	OFH	d)	FOH				
11.		80286 and 80386SX address _ iress that selects locations 00000	OH-FFF	bytes of memory using a 24-bit FFFH.				
	a)	IMB	b)	8MB				
	c)	16MB	d)	32MB				

12.		example instruction that copies OV R11D, R8D.	the	bits from R8 to R11 is
	a)	8	b)	16
	c)	32	d)	64
13.	7550	is a general-purpose reg	ister that	t holds a part of the result from a
	mu	Itiplication,		
	a)	RAX	b)	RBX
	c)	RCX	d)	RDX
14.	The	flag is set with the ST	D and c	leared with the CLD instructions.
	a)	0	b)	1
	c)	D	d)	A
15.		e is an additional da ng instructions to hold destinatio		ent that is used by some of the
	a)	CS	b)	DS
	c)	ES	d)	SS
16.		eal mode segment of memory is 6 mown, the ending address is fou		ngth, once the beginning address lding H.
	a)	1FFF	b)	00FF
	c)	6400	d)	FFFF
17.	The	describes the memory se	gment's	location, length, and access rights.
	a)	Selector	b)	Descriptor
	c)	Offset	d)	Base
18.	In 8	30386, Granularity bit. If ,G=0 the	imit spe	cifies a segment limit of
	a)	00000 to FFFFFH	b)	000000 to FFFFFFH
	c)	00000000 to FFFFFFFH	d)	0000-to FFFFH
19.	The	Linear address is the actual mem	ory locat	ion accessed by a program.
	a)	True	b)	False
20.	3	contains the page director	y base o	or root address.
	a)	CR0	b)	CR1
	c)	CR2	d)	CR3

21.		Memory paging, page directory cor e each.	tains	1024 directory entries of			
		1	b)	2			
	c)	3	d)	4			
22.	MC	V CL,[BX+4] is an example of		addressing mode.			
	3)	Register	b)	Register relative			
	c)	Direct	d)	Indirect			
23.	The direct addressing mode 8086 instruction is MOV [1234H], AX. Find the destination memory address where AX content are copied. Data segment register DS=1000H, (2M)						
	a)	12340H	b)	11234H			
	c)	11111H	d)	10000H			
24.	An intra segment jump is a jump to any memory location within the entire memory system.						
	a)	True	b)	False			
25.	An inter segment jump is a jump anywhere within the current code segment.						
	a)	True	b)	False			
26.	For the 16 bit instruction mode, if MOD=11 it select						
	a)	No displacement					
	b)	8-bit sign-extended displacement	5				
	c)	R/M is a register					
	d)	16-bit signed displacement					
27.		e PUSH instruction removes data from the stack and places it into the get 16-bit register, segment register, or a 16-bit memory location.					
	a)	True	b)	False			
28.	 The DI offset address accesses data in the extra segment for instructions that use it. 						
	a)	True	b)	False			
29.	The instruction transfers a byte, word, or double word of data from an I/O device into the extra segment memory location addressed by the DI register.						
	a)	OUTS	b)	INS			
	10	STOS	44	MOVS			

30.	The Instruction converts the contents of the AL register into a number stored in a memory table.								
	a)	OUTS	b)	INS					
	c)	XCHG	d)	XLAT					
31.	The result of following subtraction is CH=?								
	MOV CH, 22H								
	SU	SUB CH, 44H							
	a)	DEH	b)	22H					
	c)	DBH	d)	DFH					
32.	Aft	After execution of MUL BL instruction, result is stored in register.							
	a)	BX	b)	500 N					
	c)	AL.	d)	AX					
33.	After execution of IMUL EDI instruction, result is bit.								
	a)	16	b)	32					
	c)	64	d)	128					
34.	In	16/8 division the remainder is in _		_register.					
	a)	AL	b)	BL					
	c)	AH	d)	BH					
35.	The Pentium 4 processor operated in 64-bit mode performs 64-bit division on signed or unsigned numbers. The 64-bit division uses the register pair to hold the dividend.								
	a)	RDX:RAX	b)	R8-R9					
	c)	R8-R10	d)	RCX:RBX					
36.	Content of AL after execution of following code								
	MOV DX,1234H								
	MOV BX,309911								
	MOV AL,BL								
	ADD AL, DL								
	DAA								
	a)	33H	b)	23H					
	c)	CDH	d)	ADH					

37.	Cor	Content of AX after execution of following code							
	MOV AL,5								
	MC	MOV CL,3							
	MU	MULCL							
	AA	AAM							
	a)	0105H		b)	0015H				
	c)	000FH		d)	1515H				
38.	In N	In NEG AX instruction AX is one's complemented							
	a)	True		b)	False				
39.	RC	R AH,CL	instruction	(2M)					
	a)	0.00° (b, 2.20° (c) 0.00° (c) 20° (c)							
	b)	CL rotat	es right through	carry by one					
	c)	AH rota	tes right through	carry the num	ber of plac	es specified by CL			
	d)								
40.	The jump is ε 2-byte instruction that allows jumps or branches to memory locations with n+127 and -I28 bytes from the address following the jump.								
	a)	Short		b)	Long				
	c)	Far		d)	Relative				
41.	The interrupt vector table is located in the first bytes of memory at addresses								
	000000H-0003FFH								
	a)	256		b)	512				
	c)	1024		d)	2048				
42.	An interrupt occurs whenever an undefined opcode is encountered								
	in a program.								
	a)	Type 3		b)	Type 4				
	c)	Type 5		d)	Type 6				
43.	The interrupt occurs when a coprocessor is no				ot found in the system				
	B)	Type 5		b)	Type 6				
	c)	Type 7		d)	Type 8				

44.	The 80386DX addresses and 32-bit address.		of memory through its 32-bit data bus					
	a)	1GB	b)	16MB				
	c)	4GB	d)	16GB				
45.		In 80386, memory is divided into four 8-bit wide memory banks, each containing up to of memory.						
	a)	1GB	b)	16MB				
	c)	4GB	d)	16GB				
46.		The Pentium memory system is divided into banks where each bank stores byte-wide data with a parity bit.						
	a)	2	b)	4				
	c)	8	d)	16				
47.		The Pentium uses a 64-bit data bus to address memory organized in banks that each bank contain of data.						
	a)	1MB	b)	256MB				
	c)	512MB	d)	1GB				
48.	Inl	Pentium, There is an	data cache a	and an instruction cache.				
	a)	2KB,4KB	b)	4KB,4KB				
		8KB,8KB	. 0.000	8KB,16KB				
49.	The Pentium microprocessor is organized with Execution units.							
	a)	1	b)	2 .				
	c)	3	d)	4				
50.	In I	In Pentium, Page size extension enables memory pages when set.						
	a)	4KB	b)	4MB				
	c)	8KB	d)	8MB				
51.		The addresses 16M bytes of memory with its 24-bit address bus via its 16-bit data bus.						
	a)	80186	b)	80386DX				
	c)	80386SX	d)	80486				
52.	In 80386, A0, Al and A2 are encoded in the bus enable to select any or all of the four bytes in a 32-bit wide memory location.							

53.	Re loc	Reset initializes the 80386, causing it to begin executing software at memory location							
	a)	FFFFF	F0H		b)	FFFFFFFFH			
	c)	0000000	OH	35	d)	0000FFFFH			
54.	anc	is a direc	n is a coproces t connection to cate active low	the 80387	t asks 7 arith	s the 80386 to relinquish control nmetic coprocessor.			
	a)	#INTR			b)	#BUSY			
	c)	#NDP			d)	#PEREQ			
55.	In F	In Pentium pro microprocessor, the size of level 2 cache either 256KB or 512 KB.							
		True				False			
56.	The that	The checks the instruction pool and removes decoded instructions that have been executed.							
	a)	IFDU			b)	DEU			
	c)	RU			d)	IP			
57.	In P	In Pentium4, The XMM registers are double-width MMX registers.							
	a)	True				False			
58.	The mic	The instruction accesses information that indicates the type of microprocessor as well as the features supported by the microprocessor.							
	a)	MMX				XMM ·			
	c)	CPUID			d)	HTT			
		interrupt occurs after execution of each instruction if TF=1.							
	a)	TYPE0				TYPE1			
	c)	TYPE2			d)	TYPE3			
60.	In Protected mode 80386 provides a virtual 8086 operating environment to executes the 8086 programs.								
	a)	True			b)	False			

